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1. Introduction

The purpose of the current AFOSR research program is the development and

application of primitive variable composite velocity and pressure flux-

vector splitting formulations for more efficient numerical evaluation and

prediction of viscous interacting flows than is generally possible with

conventional time-dependent compressible Navier Stokes (NS) solvers. Three-

dimensional separated flows, shock-shear layer interaction, high frequenc:

laminar flow breakdown and transitional behavior and unsteady viscous/

inviscid interactions are the primary topic areas.

A reduced form of the Navier Stokes equations, termed here RNS, is the

foundation for both formulations. The RNS system is a composite of the full

Euler and boundary layer/triple deck models. The flux-splitting or composite

velocity procedures are designed to optimize the numerical representations

of viscous and inviscid regions, respectively. These techniques can be

viewed as a composite or single system 'matched interacting boundary layer-

inviscid flow' solver or as a full elliptic version of parabolized Navier

Stokes or PNS methodology. Both methods are applicable across the entire

mach number range, i.e. from incompressible to hypersonic, and the same code

has been applied at both ends of the spectrum. These formulations are

applicable to flows with moderate regions of axial and secondary flow

reversal, for capturing sharp shock waves and -.,act discontinuities, and

for steady and transient behavior. The RNS system has previously been shown

to accurately represent the full NS system for a large variety of flow

problems and with a deferred corrector procedure full NS solutions can be

recover," for this class of problems. The RNS procedure also all.wz for

simplification of numerical boundary conditions and does not require the

introduction of added artificial viscosity. This allows for fine mesh

calculations that mini.:i- nlme! i( ol 'icni'c a - ird aLso allow tor morc

efficient application of far field boundary conditions.
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Several solution procedures for the discrete system of quasilinearized

equations have been applied or are in development. For steady flow, space

marching global relaxation techniques have been applied successfully for

both the pressure variable flux-split and composite velocity formulations.

For fully supersonic conditions or for very large free stream mach numbers,

where subsonic viscous layers are very thin and where the effects of

geometry do not have a significant influence on the axial flow behavior, a

single pass will suffice to obtain the exact or a very good approximate

solution. For subsonic or transonic flows, a multiple pass or full

relaxation strategy is required.

For fine meshes, convergence rates can become quite slow; although,

experience has shown that for most cases time step limitations of NS solvers

are generally more severe. Convergence acceleration is a major element of

this research program. To date, a unidirectional or semi-coarsening multi

grid strategy, that is particularly effective when full multi grid methods

fail, as with significant grid stretching, and a sparse matrix direct solver

strategy, that is particularly effective for very strong interactions

occuring in very local domains, where relaxation methods fail or stall, have

been developed. These are currently being evaluated for three dimensional

applications.

Current problem areas under investigation include three dimensional

separated, subsonic and transonic flow over afterbody, corner wing-trough

geometries, supersonic forebody, and shock interactive base flow, with

cavity and roughness effects, and transient flow behavior associated with

airfoils and supersonic inlets. The important aspects of adaptive grid

generation and domain decomposition procedures, convergence acceleration and

algorit'm. vectorization and parallelism complement the specific geometric

cumputations.

The following topic areas have been considered during the past year. The

references in brackets are given in section 2
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Pressure Relaxation and Flux Vector Splitting [1,2,3,4,13]

Semi-coarsening Multi Grid/Laminar Flow Breakdown [1,5]

Transient Supersonic RNS Solutions for Inlet Unstart/Restart and Laminar

Flow Breakdown [7,8,9,10,11]

Supersonic RNS Solutions/Sharp Shock Capturing/BL Interaction

[7,8,9,10,111

Sparse Matrix Solvers for Complex Viscous Interactions where Iterative

Methods Fail [3,4,13,14]

Three Dimensional Separated Flow Pressure Variable Solutions

[3,4,5,7,8,9,10,111

Three Dimensional Separated Flow Composite Velocity Solutions [1,2]

During this reporting period, there have been numerous publications,

presentations, dissertations and other interactions resulting from the

research activity. These are also listed in Section 2. A review of

progress associated with selected research investigations is presented in

the following sections. A summary of research highlights, section 1.5,

concludes this discussion. Supplementary lists of previous accomplishments,

publications and student activity are given in the 1986, 1987, 1988 and 1989

Annual Reports.

1.1 Pressure Relaxation and Flux Vector Splitting

The present investigators have formulated composite pressure variable and

composite velocity procedures for the computation of large Reynolds number

(Re) viscous/inviscid interacting flows. These techniques have been applied

as full potential and Euler solvers, but the application to viscous

interacting flows has been the primary goal. This has led to devclopment of

global pressure relaxation procedures for a reduced form of the Navier

Stokes equations termed RNS. This model is valid throughout the entire Ma7h

number range anA nIlows for upstream influence or 'ellipticity', whenever

such effects are important. This could be viewed as a composite interacting

boundary layer method, as a global PNS method, or more appropriately as a
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form of flux vector splitting that more clearly defines the roles of

convective and acoustic influences. These properties provide an important

mechanism to efficiently and accurately investigate complex three-

dimensional flow phenomena, including separation, shock interaction, and

vortical interaction over the entire mach number range.

The governing equations have previously been described in detail, see

references [1-12], and are written here for arbitrary non-ortho.onal

coordinates.

Pressure/Velocity Formulation

a (pf u) + (pigv) + (p j w) = 0 (la)

e-Momentum Equation
a aP 2)+1aP

(pC u2) + (pI vu) + I (pjg wu) + curvature terms

1 7 a13

-1 11 g - g1 3 P + (viscous terms) (lb)

C-Momentum Equation

a (P./ wu) + i- (p,/ vw) + a (p,/ w2 ) + curvature terms =

-g 31 g p3 2 p + (viscous terms) (ic)

Normal Momentum Equation

(p,/ uv) + g + (p vw) + curvature terms -

21 - g2 2  - g2 3  (1d)-g p p p (d

where

gYP1  j uu ; p = pRT

The equations (1) represent an asymptotic (RNS) approximation to the full

Navier-Stokes systems and contain all of the terms that model the desired

high Reynolds number flow physics. These equations differ from the thin-

layer equations, wherein the normal viscous stresses are retained in the
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three momentum equations. The RNS system includes all normal and secondary

flow diffusion terms in the surface momentum equations, but neglects all

diffusion in the surface normal momentum equation. These differences are

quite significant as it has been shown by the present investigators that

diffusion in the normal momentum equation is of the same order as the

neglected axial diffusion effects; however, secondary flow diffusion is

essential to accurately model three-dimensional separations.

Other investigators concerned with time dependent Euler, thin-layer or

full Navier Stokes equations have introduced 'upwind' approximations that

are associated with the movement of the physical forward and backward moving

waves, i.e., flux-difference splitting, or with the movement of the discrete

forward and backward moving particles, i.e., flux-vector splitting. In

previous PNS investigations, the form of pressure/convective upwinding has

resulted from characteristic or stability considerations. In these early PNS

studies, the primary goal was to develop marching or initial value

procedures for high Mach number flows. Elliptic effects were generally

suppressed. For the present investigation, the Euler system has been re-

examined to allow for fluxes in both the downstream and upstream directions.

When the latter are neglected, the PNS methodology is recovered. When all

terms are retained and this form of flux-vector splitting is applied to the

RNS system, the global pressure relaxation procedure of the present

investigators is recovered. These results represent a distinct variation of

the flux-splitting methods presented by previous investigators.

This leads to the following discrete representation of the axial pressure

gradient:

(Pi - Pi-I ) +(Pi+l -Pl )

P ' i-1/2 g +(- i+1/2 )  A

where w - Min[l+(l)M , 1 for constant stagnation enthalpy and w =

2

min[M 1]I for the full flux split energy equation. This technique has now
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been extended to general non-orthogonal coordinates and the appropriate w

values are discussed in reference [10].

Global pressure relaxation for a pressure split form of the Euler or

reduced Navier-Stokes (RNS) equations is then equivalent to a form of flux-

vector splitting that satisfies the major eigenvalue and continuity

constraints on the fluxes and flux derivatives. The upwinding is applied

only in the axial or "streamline" direction. In keeping with the asymptotic

form of the RNS system, two-point or trapezoidal discretization is used for

appropriate normal gradients in order to allow for the accurate evaluation

of shear layers and a consistent specification of far field boundary

conditions. If the pressure gradient parameter w(M) is given by its maximum

value in subsonic regions, one of the eigenvalue is always zero and

therefore with the second-order (wp x) discretization shock resolution is

greatly improved. For regions of reversed flow convective upwinding is

combined with the condition w = 0. This ensures that the fluxes, flux

derivatives and eigenvalues remain continuous throughout the flow. This

form of flux vector splitting is specifically designed to maintain a bias in

the direction of the convective fluxes and therefore abandons the symmetry

of the earlier forms of flux vector splitting. The upwinding leads to a

relaxation method that is solely acoustic driven throughout subsonic

regions, but also includes convective relaxation in regions of reversed flow

without introducing large amounts of numerical dissipation. The procedure

has now been applied to several problems that are discussed in detail in the

papers referenced in section 2. Typical results for an afterbody

configuration, supersonic over a cone-cylinder-flare configuration and

supersonic flow over a ramp and flow in an inlet are shown in Section 3.

1.2 Direct Sparse Matrix Solvers for Fluid Flow Problems

Various iterative or factorized methods are commonly used for the

solution of fluid flow problems. These techniques, although generally
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efficient with respect to computer memory, tend to be sensitive to problem

parameters and in many cases fail to converge or require gross under-

relaxation or small time increments. Iterative methods generally follow a

false transient to the steady state. This path can introduce erroneous

behavior in certain problems. For example, in the computation of separa:ed

flows with large recirculation bubbles, high frequency phenomena near the±

reattachment point can be distorted due to false transients. -,!so,

propagation of upstream influence and non-linear convergence can take place

on different length and time scales, as determined by the iterative

techniques and not by the physics. Gross under-relaxation or, equivalently,

the use of small time steps, coupled with second or fourth order artificial

dissipation, is quite often required to stabilize these calculation. Also,

in certain cases physical high frequency modes will be suppressed. For

flows with strong viscous/inviscid interaction, e.g., shock boundary-layer

interaction, thin layers having triple-deck or similar scaling must be

appropriately resolved in order to obtain a stable and accurate solution.

This is either accomplished by using highly stretched grids or by employi..S

a large number of grid points. In either case, many of the commonly

employed iterative solution techniques become very slow or do not converge

acceptably. On the other hand, if direct solution methods are employed,

upstream influence is propagated instantaneously, even on finer or stretched

grids. Of course, the propagation of non-linear information must be

controlled in order to obtain the desired solution. The use of a direct

solver improves many of the convergence difficulties; however, they can be

quite slow and generally do require large amounts of compuuer memory. In

view of the fact that increased memory is now available routinely on both

large and desk top machines, the use of direct solvers becomes desirable and

more feasible.

Recently many investigators, including the present authors, have examined

the application of direct solvers for the computation of compressible
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viscous and inviscid subsonic/transonic flows. If has generally been found

that in two dimensions, direct solvers outperform iterative methods and in

many 'difficult' cases compute solutions where the iterative methods

generally stall or diverge. Some of this work has resulted in a number of

publications and presentations. The direct solver has now been applied to

the solution of three dimensional and two dimensional unsteady :NS

equations. The general emphasis has been for the flow past afterbodies and

for unstart and restart of supersonic inlets with a centerbody. For three

dimensional flow, the direct solver has been employed as a cross plance

solver with pressure relaxation in the axial direction. The resulting

procedure is quite efficient and illows for the solution of problems on

large grids. Additional strategies to render this procedure more efficient

have also been investigated. In order to perform the LU decomposition in a

minimum nunber of numerical operations, the YSMP (direct solver) performs

symbolic factorization which is quite time consuming. This part of the

solver has now al.nost been eliminated for steady three dimensional and two

dimensional unsteady flow computations using the RNS formulation. This is

achieved by noting that the matrix structure of the coefficient matrix at

consecutive planes, or different time steps in an otherwise unseparated

flow, remains unchanged. In these cases the symbolic factorization needs to

be performed only once. The symbolic factorization is performed only when

the matrix structure changes. This results in 40-50% savings in CPU time.

In addition, the LU factorization must be updated only periodically. The LU

factorization at one plane is saved and used to drive residuals at

subsequent planes (typically 5) to zero. For unsteady flows on finer

meshes, the storage requirements for the direct solver can be quite large.

The two to four megaword memory usually allocated to each job on most

supercomputers is exceeded for coarse meshes. In such cases, the

computations are performed on finer meshes by using domain decomposition.

The computational domain in the flow direction is divided into several
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overlapping suodomains. Usually an overlap of 3 to 5 points is prescribed.

This is found to be reasonable for implicit capturing of moving shocks. Fr

flows without shocks, even a smaller overlan can be prescribed. On each

subdomain the direct solver is employed. The resulting procedure becomes

iterative; however, these iterations converge quite rarldly. Although

convergence is dependent upon the size of At, 3-8 iterations are usuall;

sufficient to converge the solution at a given time level. These iterations

include the effort to converge all the non-linearities. The resulting

procedure is found to be quite robust and captures moving shocks and shock

boundary-layer interactions accurately. These modifications have been

incorporated into the RNS codes and have now been applied for the

computation of afterbody flows and for the unstart/restart of supersonic

in..ets.

1.3 Three Dimensional Subsonic/Transonic Composite Velocity Solutions

.k composite velocity procedure for the three-dimensional reduced Navier-

Stokes equations has been further developed. In the spirit of matched

asymptotic expansions, the velocity components are written as a combination

of multiplicative and additive composite of viscous like velocities (UW)

and pseudo-potential or inviscid velocities ( X ,'z ). The solution

procedure is then consistent ,ith both asymptotic inviscid flow and boundary

layer theory. For transonic flows, the Enquist-Osher flux biasing scheme

developed for the full potential eq-ation is used. A quasi-conservation

form of the governing equa.ions is used in shock regions to capture the

correct rotatioi.al shock; the standard non-conservation form of the

equations used in non-shock regions. The consistent coupled strongly

implicit procedure combined with a plane relaxation procedure is used to

solve the discretized equations.

A general, non-orthogonal, cur% linear system of coordinates is

presented. This allo-.s for the use of appropriate 'streamline' coordinate
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systems and places no restrictions on the type of grid. Ln the spirit of

matched asymptotic expansions, the contravariant velocities are rewritten a;

u - (U+l)(gll4 + g 12 + g134 ) - (U+l)u (2a)
P7 e

v - (g 21 + g2 2 P' + g2 3 ) (2b)

w - (U+l)(g31 4 + g 32P + g33 D) + W - (U+l)we + W(2c)

The composite representations of u and w, the axial and crossflow velocit.v

components, contain two types of terms, e.g., an irrotational 'pseudo'

potential function and viscous velocities U and W. Since the change in v

across the boundary layer is small, the normal velocity is determined solely

by the 'pseudo' potential function. This particular composite form has the

advantage that no additional unknowns are introduced and the boundary

conditions remain easy to implement.

If definitions 2(a-c) are used in the RNS equations l(a-d), the composite

system is recovered, see references [2,13,16]. The governing composite

velocity equations are differenced so that second order accuracy is obtained

for all terms. First order accurate differencing for the streamwise

derivative U and W is left as an option. The difference form of the

continuity, -momentum, and -momentum equations is centered at (i,j,k).

All terms in the i-momentum, c-momentum, and continuity equations are

differenced using central differences at half points. The derivatives of P

may then be central differenced at the half point locations. This provides

the usual three point central difference for terms like (D 4, and (D .

In the q- cross plane, the values of U and W at the half-points are

determined by the average of the values at neighboring grid points. In

order to provide the proper upwind bias consistent with the boundary layer

marching character of U and W, the values of U and W at i+1/2 and i-1/2 are

represented with upwind approximations as follows:

11



U U U+ ica' - U )
i+1/2 i  2 iaiu i -I

u. -ui_ +1 u.2

i-1/2 I-i 2 -l(U i- Ea)i

where e - 0 provides a first order accurate representation and f I

provides a second order accurate representation.

In separated flows, the representation of Wi+1/2 and W must be

modified to provide the proper upwinding for the W derivative in the

separated flow region. This is required since W appears as an additive term

in the composite representation for w rather than as a term multiplying an

inviscid velocity as does U. Therefore the only upstream influence in

separated regions on this term comes through upwinding of the W derivative.

The representations for W. and W become:
3.12i-1/2beo:

W -SM*[Wi + i ai(Wi W-)] +
i+1/2 i 2 i i-I

SP*[Wi+ 1 + 2aE (W i+l W i+2)]
1.+l

W - SM*[W + i  (W W +i-1/2 [2i-i 2 -I - i -

SP*[W i + (W - W
1

wheL e

SM - [2 + SGN(U + 1) + SGN(U. + 1)]
4 i-l 1

SP - i[2 - SGN(U + 1) - SGN(U i + 1)].4 ~ i-l

A backward difference for W results if SM - 1 and SP - 0 and a forward

difference results when SM - 0 and SP - I. At separation and reattachment

points SM - 1/2 and SP - 1/2. This leads to a central difference for W .*

This provides for a smooth transition between backward and forward

differencing at separation and reattachment points, which enhances the

stability of the solution procedure in these regions.
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The final form of the difference equations is solved using a standard

plane relaxation procedure. This global relaxation procedure solves in the

n- c-oss plane assuming values from the previous global iteration for

points ahead of the cross plane and using known values from the current

global iteration for points from the previous marching planes. For the

composite velocity equations, relaxation is only required for D since U and

W may be marched for unseparated flows. In separated flows, additional

relaxation on W is introduced due to the required upwinding of the W term.

In order to solve the difference equations in the cross plane in an

efficient and robust manner a solution algorithm that is non-iterative,

unconditionally stable, and spatially consistent is required. A solution

algorithm that satisfies the above requirements is the consistent coupled

strongly implicit procedure (CCSIP) developed by Khosla and Rubin.

1.4 Results

Transient Flows in an Inlet

In order to investigate the ability of the RNS formulation to capture

sharp moving shocks and the associated shock boundary-layer interaction,

flow through a supersonic inlet has been considered. The inlet has been

modelled as a two-dimensional channel. The internal and coupled external

flow fields have been computed for different back pressures. The solution

has been obtained using a domain decomposition strategy, where each domain

is solved by the sparse matrix direct solver. Both inviscid and viscous

flows have been considered. Typical results are depicted in figures l(a-d)

and special flow features are discussed here. In the unstart mode, i.e. for

a sufficiently large back pressure, a curved shock stands ahead of the inlet

and the mass spillage occurs around the leading edge of the inlet. For

viscous flows with reduced back pressure, a y-shaped or a lambda shock is

formed near the leading edge of the inlet. At higher stagnation pressures,

fluid tends to accumulate within the boundary layer and downstream of the

13



normal shock. This flow behavior is in agreement with flow visualization

studies by Herman [ J for flow in a shock tube. It should be emphasized

that in the present case, the flow inside and outside of the inlet are

coupled and computed simultaneously. The computations for an axisymmetric

inlet with a centerbody are in progress. Some results have been presented

in reference [10,111.

Supersonic flow past a cone-cylinder-flare

Axisymmetric laminar flow past the cone-cylinder-flare configuration at

M - 3 have been computed. The results are shown in figures 2(a-c). In

these calculations, the outer bow shock is fitted and imbedded recompression

shocks are captured. It can be seen that these flows, with strong viscous/

inviscid interaction, are captured quite well. It may be noticed that the

global procedure converges much faster at higher mach numbers. Very

recently additional results for flows over a cylindrical compression ramp at

M - 7 and a variety of Reynolds numbers have also been obtained. These

results are depicted in figures 3(a-e). In these computations, all shocks

have been captured. Flow reversal due to shock-boundary-layer interaction

in the compression corner is quite evident.

Three-Dimensional Flow:

Three dimensional computations for M - .6 laminar flow past past

afterbody configurations of elliptical and hyper-elliptic cross-sections

have also been considered. The results are shown in figures 4(a-d) and 5(a-

d). Preliminary results indicate the existence of a vortex breakdown along

the major axis of the ellipse. This will be further investigated with grid

refinement studies in both the azimuthal and flow direction.

The results of transonic flow calculations on an afterbody configuration

of elliptic cross-section, using composite velocity formulation are depicted

in figures 6(a-e). These computations are for turbulent flow conditions and

use to Baldwin Lomax eddy viscosity model.

14



Interactions

During the period of this annual report there has been interactions with

several outside researchers; in addition, one Ph.D graduate has accepted

employment with GE Aircraft Engines CFD branch. Dr. Bender, at General

Dynamics, is continuing his investigation on the application of direct

solvers RNS procedures for chemically reacting PNS solvers. There were many

fruitful discussions about working on a joint project. Dr. Gordnier is

still carrying out additional studies for composite velocity applications to

afterbody flows. The Pl's also had extensive discussions with Drs. L.

Schutzenhofer, Helen Miagney and K. Tucker regarding code validations for

applications to flows related to space shuttle program.

RNS procedures for internal flows are also under investigation at the

NASA Lewis Research Center by T. Bensen, J. Adamcyzk, and by D.R. Reddy at

Sverdrup, a Lewis contractor. A number of meetings have taken place with

these researchers. Several papers on supersonic inlet unstart/restart

related to their interest have either appeared or are in the completion

stage. Applications to turbomachinery are also in the completion stage.

Applications to turbomachinery are also being considered.

Several researches from Lewis, WPAFB and AFIT have shown interest in

working on RNS techniques towards their Ph.D theses. Mark Celestina of

Sverdrup and Philip Morgan from WPAFB have already enrolled in our Ph.D

program.

Roger Cohen who spent two years with us as a fullbright fellow, is

currently finishing his Ph.D under the supervision of Prof. Fletcher at

University of Sydney in Australia. Recently, he presented two papers on RNS

direct solver solutions at the international conference in Brisbane and

Tokyo. Roger is also investigating other re-ordering techniques and the

application of Conjugate gradient type methods to the RNS direct solver

approach.
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H.C. Raven and M. Hockstoa of Maritime Research Institute in Netherlands

are also continuing the successful application of the RNS techniques to the

solutions for ship stern flow computations. For high mach number supersonic

and hypersonic flows, the RNS formulation is still being applied by M.

Barnett of UTRC and is also being considered by D.R. Reddy of Sverdrup.

S. Rubin participated in a workshop on modified Navier-Stokes procedures

for efficient evaluation of thick interacting boundary-layer flows held at

the Royal Institute in Stockholm, Sweden, May 1989. The participation was

by invitation only.

Highlights of Research Progress

(i) The reduced Navier-Stokes (RNS) formulation for the solution of

viscous-inviscid interacting flows with significant upstream influence

has been applied for the transient flows in a supersonic inlet with a

centerbody, three dimensional afterbody flows, hypersonic axisymmetric

flow over cone-cylinder flare configuration and a two dimensional

ramp. The solution technique applies uniformly over the entire mach

number range and allows for shock boundary-layer interaction, and for

moderate region of axial and secondary flow recirculation.

Furthermore, the formulation does not require the addition of explicit

artificial viscosity.

(ii) In order to apply the procedure on fine meshes, a domain decomposition

strategy is developed. This strategy when combined with a direct

solver on each subdomain leads to an efficient and robust solution

algorithm. Flows with moving shocks, recirculation regions lambda

shocks are computed by this technique.

(iii) The pressure-split flux vector procedure is now extended to arbitrary

non-orthogonal coordinates.
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2. AFOSR Publications, Presentations, Related Activity and Interaction
1/89-1/90

A. Publications and Proceedings

1. Gordnier, R.E. and Rubin, S.G.: "Transonic Flow Solutions Using a
Composite Velocity Procedure for the RNS Equations", Computers and
Fluids, 17. 1, pp. 85-98 , Feb. 1989

2. Gordnier, R.E. and Rubin, S.G.: "Three Dimensional Composite Velocity
Solutions for Subsonic/Transonic Flows", Proceedings of 4th symposium on
Numerical and Physical Aspects of Aerodynamic Flows, Long Beach, Ca.,
Springer-Verlag Pub., Dec. 1989

3. Khosla, P.K., Rubin, S.G. and Himansu, A.: "Three Dimensional RS
Separated Flow Calculations", AIAA 29th Aerospace Sciences Meeting,
Reno, Ne., AIAA Paper No. 89-0300, Jan. 1989

4. Cohen, R. and Khosla, P.K.: "Three Dimensional RNS Solutions for
Subsonic Separated and Non Separated Flows", Int'l J. Numerical Methods
in Fluids, Vol. 9, pp. 1087-1098, 1989

5. Rubin, S. and Himansu, A.: "Convergence Properties of High Reynolds
Number Separated Flow Calculations, Int'l J. Num. Methods in Fluids, 9,
pp. 1395-1411, 1989.

B. Presentations, Seminars and Other Student Activity

6. Rosenbaum, D. and Rubin S.G." Global Pressure Relaxation for Laminar
2-D Internal Flow, Accepted for Int. J. for Numerical Methods in Fluids.

7. Pordal, H.S., Khosla, P.K. and Rubin, S.G., "Inviscid Steady/Unsteady
Flow Calculations," Presented at CATC Meeting in Brisbane, Australia,
July 1989. Also to appear the Proceedings to be published by Academic

Press.

8. Pordal, H.S., Khosla, P.K. and Rubin, S.G., "Inviscid Steady/Unsteady
Flow Calculations," submitted to Computers & Fluids.

9. Pordal, H.S., Khosla, P.K. and Rubin, S.G., "Unsteady Flow in Planar
Inlets," submitted to Int. Conf. on Unsteady Flows.

10. Pordal, H.S., Khosla, P.K. and Rubin, S.G., "Unsteady Viscous and
Inviscid Supersonic Flow Calculations in Axisymmetric Inlets," AIAA
Conference, Reno, AIAA-0585, 1990.

ii. Pordal, H.S., Khosla, P.K. and Rubin, S.G., "Supersonic Turbulent Flows
in Inlets," accepted for CFD Symposium on Aeropropulsion at NASA Lewis.

12. Hussain, Almahroos, Khosla, P.K. and Rubin, S.G., "Subsonic/Transonic
Flow Calculations Over 3-D Afterbodies," accepted for CFD Symposium on
Aeropropulsion at NASA Lewis.

13. Gordnier, R.E. and Rubin, S.G.: Three Dimensional Composite Velocity
Solutions for Subsonic/Transonic Flow Over Afterbodies, AIAA-89-1837,
1989.

14. Discussions with NASA Marshall CFD Group, March 1989.
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15. Rubin, S.G., Presentation of Review of our Work on Workshop on Thick
Boundary-Layers at Royal Institute in Stockholm, Sweden, May, 1989.

16. Gordnier. R.E.: "Composite RNS Solutions for Afterbody Configurations",
Ph.D. dissertation, Jan. 1989, now at AFWAL, WPAFB, Dayton, OH.

17. Liang. T.: "RNS Procedures for Supersonic Viscous Interaction", Ph.D
dissertations, Jan. 1990, Now at G.E. Evendale, OH.

18. Hagenmaier,. M.: G.E. Fellow and Summer Research Assistant working on
adaptive methods for high speed RNS formulations, M.S. student

C. Committees and Assignments

S.G. Rubin (1988-89):

Member of the Advisory Committee for (Case Institute/NASA Lewis)
Institute for Computational Methods in Propulsion (ICOMP)

Consultant on the NASA (OAST) Aerospace Research and Technology
Subcommittee (ARTS) of the Aeronautics Advisory Committee (AAC)

Member of NASA AAC Review Committee on Supersonic Cruise Airplane Drag
Reduction

Editor-in-Chief, Int'l Journal, Computers and Fluids, Pergamon Press.

P.K. Khosla (1988-89):

Member of Editorial Advisory Board, Int'l Journal, Computers and Fluids

D. Student Graduates (2/1/85 - 10/31/89)

1. H.T. Lai, Ph.D 1985 (Sverdrup, Cleveland)

2. S.V. Ramakrishnan, Ph.D 1988 (Rockwell)

3. Eric Bender, Ph.D 1988 (General Dynamics)

4. Raymond Gordnier, Ph.D 1988 (WRDC)

5. D. Rosenbaum, Ph.D 1988 (Garrett Air Research)

6. T. Liang, Ph.D 1989 (General Electric)

7. H. Pordal, M.S. 1986 (U.C. Ph.D Student)

8. A. Himansu, M.S. 1986 (U.C. Ph.D Student)

9. M. Hagenmaier, M.S. 1990 (U.C. Ph.D Student)
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